+ - 0:00:00
Notes for current slide
Notes for next slide

Art + #rstats

Sharla Gelfand

Toronto Data Workshop

1 / 41

why aRt?

3 / 41
4 / 41
5 / 41

You can do both

Digital art is fast, iterative, surprising

Less "I suck at this" beginner hurdles

Less startup cost

I ❤️ R

6 / 41

Pixel Art

A form of digital art where images are edited at the pixel level.

Think 8-bit video games aesthetics.

7 / 41
library(ggplot2)
library(dplyr)
smile <- expand.grid(x = 1:8, y = 1:8) %>%
filter(!(x %in% c(1, max(x)) & y %in% c(1, max(y)))) %>%
filter(!(x %in% c(2, max(x) - 1) & y %in% c(1, max(y)))) %>%
filter(!(x %in% c(1, max(x)) & y %in% c(2, max(y) - 1)))
ggplot() +
geom_tile(
data = smile, aes(x = x, y = y), width = 1, height = 1,
size = 1, fill = "yellow", colour = "black"
) +
coord_equal() +
theme_void()
9 / 41
library(ggplot2)
library(dplyr)
smile <- expand.grid(x = 1:8, y = 1:8) %>%
filter(!(x %in% c(1, max(x)) & y %in% c(1, max(y)))) %>%
filter(!(x %in% c(2, max(x) - 1) & y %in% c(1, max(y)))) %>%
filter(!(x %in% c(1, max(x)) & y %in% c(2, max(y) - 1)))
ggplot() +
geom_tile(
data = smile, aes(x = x, y = y), width = 1, height = 1,
size = 1, fill = "yellow", colour = "black"
) +
coord_equal() +
theme_void()

9 / 41
library(ggplot2)
library(dplyr)
smile <- expand.grid(x = 1:8, y = 1:8) %>%
filter(!(x %in% c(1, max(x)) & y %in% c(1, max(y)))) %>%
filter(!(x %in% c(2, max(x) - 1) & y %in% c(1, max(y)))) %>%
filter(!(x %in% c(1, max(x)) & y %in% c(2, max(y) - 1)))
eyes <- data.frame(x = c(3, 6), y = c(6, 6))
ggplot() +
geom_tile(
data = smile, aes(x = x, y = y), width = 1, height = 1,
size = 1, fill = "yellow", colour = "black"
) +
geom_tile(
data = eyes, aes(x = x, y = y), width = 1, height = 1,
fill = "black", colour = "black"
) +
coord_equal() +
theme_void()

10 / 41
library(ggplot2)
library(dplyr)
smile <- expand.grid(x = 1:8, y = 1:8) %>%
filter(!(x %in% c(1, max(x)) & y %in% c(1, max(y)))) %>%
filter(!(x %in% c(2, max(x) - 1) & y %in% c(1, max(y)))) %>%
filter(!(x %in% c(1, max(x)) & y %in% c(2, max(y) - 1)))
eyes <- data.frame(x = c(3, 6), y = c(6, 6))
mouth <- data.frame(x = 3:6, y = c(3, 2, 2, 3))
ggplot() +
geom_tile(
data = smile, aes(x = x, y = y), width = 1, height = 1,
size = 1, fill = "yellow", colour = "black"
) +
geom_tile(
data = eyes, aes(x = x, y = y), width = 1, height = 1,
fill = "black", colour = "black"
) +
geom_tile(
data = mouth, aes(x = x, y = y), width = 1, height = 1,
fill = "black", colour = "black"
) +
coord_equal() +
theme_void()

11 / 41

Rendering

Recreating an image (realistic or not) from a 2D or 3D model, via a computer program.

12 / 41
library(rayrender)
generate_ground(
material = diffuse(color = "#dd99ba")
) %>%
render_scene()
16 / 41
library(rayrender)
generate_ground(
material = diffuse(color = "#dd99ba")
) %>%
render_scene()
16 / 41
library(rayrender)
generate_ground(
material = diffuse(color = "#dd99ba")
) %>%
add_object(sphere(
material = diffuse(color = "#99badd")
)) %>%
render_scene()
17 / 41
library(rayrender)
generate_ground(
material = diffuse(color = "#dd99ba")
) %>%
add_object(sphere(
material = diffuse(color = "#99badd")
)) %>%
add_object(sphere(
x = 2, radius = 0.5,
material = dielectric(color = "#badd99")
)) %>%
render_scene(
)
18 / 41
library(rayrender)
generate_ground(
material = diffuse(color = "#dd99ba")
) %>%
add_object(sphere(
material = diffuse(color = "#99badd")
)) %>%
add_object(sphere(
x = 2, radius = 0.5,
material = dielectric(color = "#badd99"
)) %>%
render_scene(
fov = 40
)
19 / 41
library(rayrender)
generate_ground(
material = diffuse(color = "#dd99ba")
) %>%
add_object(sphere(
material = diffuse(color = "#99badd")
)) %>%
add_object(sphere(
x = 2, radius = 0.5,
material = dielectric(color = "#badd99")
)) %>%
add_object(cube(
x = -2, z = -1, width = 1,
material = metal(color = "#99ddba")
)) %>%
render_scene(
fov = 40
)
20 / 41
library(rayrender)
generate_ground(
material = diffuse(color = "#dd99ba")
) %>%
add_object(sphere(
material = diffuse(color = "#99badd")
)) %>%
add_object(sphere(
x = 2, radius = 0.5,
material = dielectric(color = "#badd99")
)) %>%
add_object(cube(
x = -2, z = -1, width = 1,
material = metal(color = "#99ddba")
)) %>%
add_object(pig(
y = 1, z = 1,
scale = 0.4, angle = c(0, -60, 0)
)) %>%
render_scene(
fov = 40
)
21 / 41
library(rayrender)
generate_ground(
material = diffuse(color = "#dd99ba")
) %>%
add_object(sphere(
material = diffuse(color = "#99badd")
)) %>%
add_object(sphere(
x = 2, radius = 0.5,
material = dielectric(color = "#badd99")
)) %>%
add_object(cube(
x = -2, z = -1, width = 1,
material = metal(color = "#99ddba")
)) %>%
add_object(pig(
y = 1, z = 1,
scale = 0.4, angle = c(0, -60, 0)
)) %>%
render_scene(
fov = 40,
lookfrom = c(-1, 4, 0)
)
22 / 41

Generative art

"Generative art is art programmed using a computer that intentionally introduces randomness as part of its creation process."

- Why Love Generative Art?

23 / 41

Generative art

The environment is constrained, but decisions are made randomly, rather than by the artist.

library(ggplot2)
library(ggforce)
n <- 5
ggplot() +
geom_circle(aes(
x0 = rnorm(n),
y0 = rnorm(n),
r = runif(n)
)) +
theme_void()

25 / 41

Generative art

Additional complexity doesn't mean additional time or effort.

library(ggplot2)
library(ggforce)
n <- 100
ggplot() +
geom_circle(aes(
x0 = rnorm(n),
y0 = rnorm(n),
r = runif(n)
)) +
theme_void()

26 / 41

generativeart package

library(generativeart)
formula <- list(
x = quote(rnorm(5) * x_i - cos(y_i^2)),
y = quote(rnorm(5) * y_i^2 + sin(x_i))
)
generate_img(
formula = formula,
polar = FALSE,
nr_of_img = 1
)
27 / 41

generativeart package

library(generativeart)
formula <- list(
x = quote(rnorm(5) * x_i - cos(y_i^2)),
y = quote(rnorm(5) * y_i^2 + sin(x_i))
)
generate_img(
formula = formula,
polar = FALSE,
nr_of_img = 1
)

27 / 41

generativeart package

library(generativeart)
formula <- list(
x = quote(rnorm(5) * x_i - cos(y_i^2)),
y = quote(rnorm(5) * y_i^2 + sin(x_i))
)
generate_img(
formula = formula,
polar = TRUE,
nr_of_img = 2
)

Seed: 2917

28 / 41

generativeart package

library(generativeart)
formula <- list(
x = quote(rnorm(5) * x_i - cos(y_i^2)),
y = quote(rnorm(5) * y_i^2 + sin(x_i))
)
generate_img(
formula = formula,
polar = TRUE,
nr_of_img = 2
)

Seed: 3553

29 / 41

generativeart package

library(generativeart)
formula <- list(
x = quote(runif(5) * x_i - cos(y_i^2)),
y = quote(rnorm(5) * y_i^2 + sin(x_i))
)
generate_img(
formula = formula,
polar = TRUE,
nr_of_img = 1,
color = "red"
)

30 / 41

flametree package

library(flametree)
flametree_grow(
seed = 1234,
time = 1,
split = 2
) %>%
flametree_plot()

31 / 41

flametree package

library(flametree)
flametree_grow(
seed = 1234,
time = 2,
split = 2
) %>%
flametree_plot()

32 / 41

flametree package

library(flametree)
flametree_grow(
seed = 1234,
time = 2,
split = 4
) %>%
flametree_plot()

33 / 41

flametree package

library(flametree)
flametree_grow(
seed = 1234,
time = 5,
split = 4
) %>%
flametree_plot(
background = "pink",
palette = "ggthemes::Classic Red-Green Light"
)

34 / 41





"For me, the sweet spot of generative art lies in creating a system that you know well enough to set it up for success, but is so complex that you still get surprised when you see the result."

Thomas Lin Pedersen

35 / 41

And more!

36 / 41

Ryan Timpe

38 / 41
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow